Errata for
 Signals and Systems: A MATLAB Integrated Approach

- Page 30, Eqn. (1.55) should be corrected as follows:

$$
\begin{equation*}
x(t)=x_{r}(t)+j x_{i}(t) \tag{1.55}
\end{equation*}
$$

- Page 31, Example 1.4: First displayed equation should be corrected as follows:

$$
x(t)=x_{r}(t)+j x_{i}(t)
$$

- Page 40, Example 1.10: Last displayed equation should be corrected as follows:

$$
P_{x}=\lim _{T \rightarrow \infty}\left[\frac{1}{T} \int_{-T / 2}^{T / 2} x^{2}(t) d t\right]
$$

- Page 66, Eqn. (1.165) should be corrected as follows:

$$
\begin{equation*}
x[n]=x_{r}[n]+j x_{i}[n] \tag{1.165}
\end{equation*}
$$

- Page 88, Problem 1.27, part c: Delete the word "both".
- Page 205, displayed equation for $y[0]$ should be corrected as follows:

$$
y[0]=(1-\alpha) y[-1]+\alpha x[-1]
$$

- Page 209, last line above Eqn. (3.59) should be corrected as follows:
"...the characteristic equation by z^{N} to obtain"
- Page 218, Example 3.14: Last displayed equation should be corrected as follows:

$$
y_{h}[n]=1.5(1-\alpha)(1-\alpha)^{n}+1
$$

- Page 222, sentence above Eqn. (3.93) should be modified as follows:
"... that utilize an intermediate signal $w[n]$ are equivalent to ..."
- Page 245, equation at the bottom of the page should be corrected as follows:

$$
\text { Eqn. (3.15): } \quad y[n]=(1+c) y[n-1]-x[n]
$$

- Page 248, Eqn. (3.164) should be corrected as follows:

$$
\begin{align*}
& a_{0} y[n]+a_{1} y[n-1]+\ldots+a_{N-1} y[n-N+1]+a_{N} y[n-N]= \\
& \quad b_{0} x[n]+b_{1} x[n-1]+\ldots+b_{M-1} x[n-M+1]+b_{M} x[n-M] \tag{3.164}
\end{align*}
$$

- Page 254, Problem 3.4, part a, correct as follows:
a. $\quad \operatorname{Sys}_{1}\{x[n]\}=3 x[n]$ and $\operatorname{Sys}_{2}\{w[n]\}=n w[n]$
- Page 279, displayed equation for a_{k} should be corrected as follows:

$$
a_{k}=\frac{2}{3} \int_{-0.5}^{0.5}(1) \cos (2 \pi k t / 3) d t=\frac{2 \sin (2 \pi k / 3)}{\pi k}
$$

- Page 318, Eqn. (4.152) should be corrected as follows:

$$
\theta(f)= \begin{cases}\beta(f) & \text { if } B(f) \geq 0 \tag{4.152}\\ \beta(f) \pm \pi & \text { if } B(f)<0\end{cases}
$$

- Page 426, Eqns. (5.45) and (5.46) should be corrected as follows:

$$
\begin{align*}
& \tilde{x}[-n]=\tilde{x}[n] \text {, all } n \text { implies that } \quad \operatorname{Im}\left\{\tilde{c}_{k}\right\}=0 \text {, all } k \tag{5.45}\\
& \tilde{x}[-n]=-\tilde{x}[n] \text {, all } n \quad \text { implies that } \quad \operatorname{Re}\left\{\tilde{c}_{k}\right\}=0 \text {, all } k \tag{5.46}
\end{align*}
$$

- Page 427, Table 5.1: Some values in the table have incorrect signs. Corrected table is given below:

k	\tilde{c}_{k}	$\tilde{c}_{k} \mid$	$\tilde{\theta}_{k}$
0	0.0	0.0	$\mathrm{~N} / \mathrm{A}$
1	$-j 0.4710$	0.4710	$-\pi / 2$
2	$j 0.0625$	0.0625	$\pi / 2$
3	$j 0.0290$	0.0290	$\pi / 2$
4	0.0	0.0	$\mathrm{~N} / \mathrm{A}$
5	$-j 0.0290$	0.0290	$-\pi / 2$
6	$-j 0.0625$	0.0625	$-\pi / 2$
7	$j 0.4710$	0.4710	$\pi / 2$

- Pages 447,449, Example 5.16: Change the signal in the problem statement to $x[n]=\alpha^{n-1} u[n-1]$. Correspondingly, the top two equations on Page 458 become

$$
\alpha^{n} u[n] \stackrel{\mathscr{F}}{\longleftrightarrow} \frac{1}{1-\alpha e^{-j \Omega}} \quad \text { and } \quad X(\Omega)=\mathscr{F}\left\{\alpha^{n-1} u[n-1]\right\}=\frac{e^{-j \Omega}}{1-\alpha e^{-j \Omega}}
$$

- Page 457, 458 Example 5.18: Change the signal in the problem statement to $x[n]=n \alpha^{n} u[n]$. Correspondingly, the top two equations on Page 458 become

$$
\alpha^{n} u[n] \stackrel{\mathscr{F}}{\longleftrightarrow} \frac{1}{1-\alpha e^{-j \Omega}} \quad \text { and } \quad n \alpha^{n} u[n] \stackrel{\mathscr{F}}{\longleftrightarrow} j \frac{d}{d \Omega}\left[\frac{1}{1-\alpha e^{-j \Omega}}\right]
$$

- Page 480, Example 5.28:

Two unnumbered equations are missing a $1 / N$ factor, and should be corrected as follows:

$$
\begin{gathered}
H(\Omega)=\frac{1}{N} \frac{1-e^{-j \Omega N}}{1-e^{-j \Omega}} \\
H(\Omega)=\frac{e^{-j \Omega N / 2}\left(e^{j \Omega N / 2}-e^{-j \Omega N / 2}\right)}{N e^{-j \Omega / 2}\left(e^{j \Omega / 2}-e^{-j \Omega / 2}\right)} \\
=\frac{\sin (\Omega N / 2)}{N \sin (\Omega / 2)} e^{-j \Omega(N-1) / 2}
\end{gathered}
$$

As a result, the vertical axis scaling of the magnitude graph in Fig. 5.41(a) should be modified as follows:

- Page 483, Eqns. (5.235) and (5.236): Change ω_{0} to Ω_{0}.
- Page 485, unnumbered equation: The extraneous equal sign at the end of the equation should be removed.
- Page 507, Table 5.5: Some of the signs are reversed. The correct Table 5.5 should be as follows:

k	$X[k]$	$H[k]$	$Y[k]$
0	$8.0000+j 0.0000$	$15.0000+j 0.0000$	$120.0000+j 0.0000$
1	$5.3992-j 0.6735$	$2.5000-j 3.4410$	$11.1803-j 20.2622$
2	$-6.8992+j 7.4697$	$2.5000-j 0.8123$	$-11.1803+j 24.2784$
3	$-6.8992-j 7.4697$	$2.5000+j 0.8123$	$-11.1803-j 24.2784$
4	$5.3992+j 0.6735$	$2.5000+j 3.4410$	$11.1803+j 20.2622$

- Page 516, MATLAB Exercise 5.3, last sentence: Change the phrase "circular convolution" to "periodic convolution".
- Page 591, Problem 6.14 should be corrected as follows: "The signal $x_{a}(t)=\cos (150 \pi t)$ is ..."
- Page 663, unnumbered dissplayed equation in the middle of the page: Change z to s.

$$
H(s)=\frac{B(s)}{A(s)}=\frac{b_{M} s^{M}+b_{M-1} s^{M-1}+\ldots+b_{1} s+b_{0}}{a_{N} s^{N}+a_{N-1} s^{N-1}+\ldots+a_{1} s+a_{0}}
$$

- Page 709, MATLAB Exercise7.8, second line of MATLAB code from the top should be corrected as follows:

$$
\gg \text { pls }=[-1,-2,-3] ;
$$

- Page 726, Eqn. (8.1) should be corrected as follows:

$$
\begin{equation*}
X(z)=\ldots+x[-2] z^{2}+x[-1] z^{1}+x[0]+x[1] z^{-1}+x[2] z^{-2}+\ldots \tag{8.1}
\end{equation*}
$$

- Page 821, Example 8.44, first line: Change the word "cascade" to "parallel".
- Page 911, 4-th line of MATLAB code should be corrected as follows:

$$
\gg \mathrm{H}=\mathrm{C} / \mathrm{z} * \mathrm{rsm} * \mathrm{~B}+\mathrm{D}
$$

- Page 973 , displayed equation for $\Theta(\Omega)$ should be corrected as follows:

$$
\Theta(\Omega)=-j^{2} 2 \Omega
$$

- Page 975, Eqns. (10.173) and (10.174) should be corrected as follows:

$$
\begin{gather*}
h_{T}[n]=\left\{\begin{array}{cc}
h_{d}[n], & -M \leq n \leq M \\
0, & \text { otherwise }
\end{array}\right. \tag{10.173}\\
H_{T}(\Omega)=\sum_{n=-\infty}^{\infty} h_{T}[n] e^{-j \Omega n}=\sum_{n=-M}^{M} h_{d}[n] e^{-j \Omega n} \tag{10.174}
\end{gather*}
$$

- Page 1019, Fig. 11.10: Vertical axis should be labeled $m(t)$.

